Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests.

نویسندگان

  • Gregory P Asner
  • Roberta E Martin
  • Raul Tupayachi
  • Ruth Emerson
  • Paola Martinez
  • Felipe Sinca
  • George V N Powell
  • S Joseph Wright
  • Ariel E Lugo
چکیده

Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific Islands to quantify environmental and taxonomic drivers of LMA variation, and to advance remote-sensing measures of LMA. We uncovered strong taxonomic organization of LMA, with species accounting for 70% of the global variance and up to 62% of the variation within a forest stand. Climate, growth habit, and site conditions are secondary contributors (1-23%) to the observed LMA patterns. Intraspecific variation in LMA averages 16%, which is a fraction of the variation observed between species. We then used spectroscopic remote sensing (400-2500 nm) to estimate LMA with an absolute uncertainty of 14-15 g/m2 (r2 = 0.85), or approximately 10% of the global mean. With radiative transfer modeling, we demonstrated the scalability of spectroscopic remote sensing of LMA to the canopy level. Our study indicates that remotely sensed patterns of LMA will be driven by taxonomic variation against a backdrop of environmental controls expressed at site and regional levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests

Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data const...

متن کامل

Height is more important than light in determining leaf morphology in a tropical forest.

Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have pr...

متن کامل

Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests

Airborne high fidelity imaging spectroscopy (HiFIS) holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantita...

متن کامل

Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy.

Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing ...

متن کامل

Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ecological applications : a publication of the Ecological Society of America

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2011